Weakly supervised machine learning

نویسندگان

چکیده

Supervised learning aims to build a function or model that seeks as many mappings possible between the training data and outputs, where each will predict label match its corresponding ground-truth value. Although supervised has achieved great success in tasks, sufficient supervision for labels is not accessible domains because accurate labelling costly laborious, particularly medical image analysis. The cost of dataset with much higher than other domains. Therefore, it noteworthy focus on weakly analysis, more applicable practical applications. In this review, authors give an overview latest process including incomplete, inexact, inaccurate supervision, introduce related works different applications Related concepts are illustrated help readers get ranging from unsupervised within scope machine learning. Furthermore, challenges future analysis discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakly-supervised Dictionary Learning

We present a probabilistic modeling and inference framework for discriminative analysis dictionary learning under a weak supervision setting. Dictionary learning approaches have been widely used for tasks such as low-level signal denoising and restoration as well as high-level classification tasks, which can be applied to audio and image analysis. Synthesis dictionary learning aims at jointly l...

متن کامل

Weakly supervised learning of allomorphy

Most NLP resources that offer annotations at the word segment level provide morphological annotation that includes features indicating tense, aspect, modality, gender, case, and other inflectional information. Such information is rarely aligned to the relevant parts of the words—i.e. the allomorphs, as such annotation would be very costly. These unaligned weak labelings are commonly provided by...

متن کامل

Weakly Supervised Learning of Affordances

Localizing functional regions of objects or affordances is an important aspect of scene understanding. In this work, we cast the problem of affordance segmentation as that of semantic image segmentation. In order to explore various levels of supervision, we introduce a pixelannotated affordance dataset of 3090 images containing 9916 object instances with rich contextual information in terms of ...

متن کامل

Hand pose estimation through semi-supervised and weakly-supervised learning

We propose a method for hand pose estimation based on a deep regressor trained on two different kinds of input. Raw depth data is fused with an intermediate representation in the form of a segmentation of the hand into parts. This intermediate representation contains important topological information and provides useful cues for reasoning about joint locations. The mapping from raw depth to seg...

متن کامل

Bandit Label Inference for Weakly Supervised Learning

The scarcity of data annotated at the desired level of granularity is a recurring issue in many applications. Significant amounts of effort have been devoted to developing weakly supervised methods tailored to each individual setting, which are often carefully designed to take advantage of the particular properties of weak supervision regimes, form of available data and prior knowledge of the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: CAAI Transactions on Intelligence Technology

سال: 2023

ISSN: ['2468-2322', '2468-6557']

DOI: https://doi.org/10.1049/cit2.12216